selected publications
-
academic article
-
Evripidou CKassotakis PVanhaecke P. Integrable reductions of the dressing chain.
Journal of Computational Dynamics.
6:277-306.
2019
Full text if available -
Celledoni EEvripidou CPMcLaren DIOwren BQuispel GRWTapley BKVan Der Kamp PH. Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps.
Journal of Physics A: Mathematical and Theoretical.
52.
2019
Full text if available -
Evripidou CPSmyrlis YS. Analyticity of the attractors of dissipative-dispersive systems in higher dimensions.
Mathematical Methods in the Applied Sciences.
41:7733-7741.
2018
Full text if available -
Evripidou CAVan Der Kamp PHZhang C. Dressing the Dressing Chain.
Symmetry, Integrability and Geometry: Methods and Applications.
14:1-14.
2018
Full text if available -
Evripidou CAQuispel GRWRoberts JAG. Poisson structures for difference equations.
Journal of Physics A: Mathematical and Theoretical.
51.
2018
Full text if available -
Evripidou CAKassotakis PVanhaecke P. Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems.
Regular and Chaotic Dynamics.
22:721-739.
2017
Full text if available -
Damianou PAEvripidou CAKassotakis PVanhaecke P. Integrable reductions of the Bogoyavlenskij-Itoh Lotka-Volterra systems.
Journal of Mathematical Physics.
58:1-17.
2017
Full text if available -
Evripidou CA. Coxeter polynomials of Salem trees.
Colloquium Mathematicum.
141:209-226.
2015
Full text if available -
Charalambides SADamianou PAEvripidou C. On generalized Volterra systems.
Journal of Geometry and Physics.
87:86-105.
2015
Full text if available
-
Evripidou CKassotakis PVanhaecke P. Integrable reductions of the dressing chain.
Journal of Computational Dynamics.
6:277-306.
2019
-
conference paper
-
Charalambides SADamianou PAEvripidou CA. Generalized Lotka—Volterra systems connected with simple Lie algebras.
Journal of Physics.
2015
Full text if available -
Charalambides SADamianou PAEvripidou CP. A Construction of Generalized Lotka–Volterra Systems Connected with n ( ℂ ) $$\mathfrak{s}\mathfrak{l}_{n}(\mathbb{C})$$.
Springer Proceedings in Mathematics and Statistics.
323-330.
2014
Full text if available
-
Charalambides SADamianou PAEvripidou CA. Generalized Lotka—Volterra systems connected with simple Lie algebras.
Journal of Physics.
2015