Theoretical investigation of main-group element hydride insertion into phosphorus-heterocyclic carbenes (PHCs) Academic Article uri icon

abstract

  • Initial reports of ring expansion reactions (RER) of N-heterocyclic carbenes (NHCs) with main-group element hydrides have led to several synthetic and theoretical investigations, which include reports of insertion by Be, B, Al, Si, and Zn hydrides. The RERs generally lead to insertion of the heteroatom into the endocyclic C–N bond with formation of an expanded heterocyclic ring. Following the recent isolation of a P-heterocyclic carbene (PHC), here we report results from a computational study (RI-SCS-MP2/def2-TZVP//M06–2X/def2-TZVP) of RERs with a series of PHCs for the ring-insertion of silicon (SiH4, SiH2Ph2) and boron (BH3, BH2NMe2) hydrides. In order to explore the roles of both electronic and steric effects on PHCs and their reactivity, a series of P-substituent PHCR (R=H, Me, Ph, and bulky Ar groups) were investigated. Bulky R groups serve to maximise ring planarity and the σ-donating capability of the PHC. For RER, the PHC analogues exhibit facile initial hydride transfer from the main-group hydrides to the carbene carbon, with barriers that are substantially lower than with NHCs. However, the full ring insertion mechanisms for PHCs are, in general, kinetically unfavourable due to a large barrier associated with the ring-expansion step. While bulky P-substituents maximise heterocycle planarity towards that of NHCs, the RER reactivity with bulky PHCs does not reflect that of an NHC.

publication date

  • August 2020