Evidence That the EphA2 Receptor Exacerbates Ischemic Brain Injury Academic Article uri icon


  • Ephrin (Eph) signaling within the central nervous system is known to modulate axon guidance, synaptic plasticity, and to promote long-term potentiation. We investigated the potential involvement of EphA2 receptors in ischemic stroke-induced brain inflammation in a mouse model of focal stroke. Cerebral ischemia was induced in male C57Bl6/J wild-type (WT) and EphA2-deficient (EphA2(-/-)) mice by middle cerebral artery occlusion (MCAO; 60 min), followed by reperfusion (24 or 72 h). Brain infarction was measured using triphenyltetrazolium chloride staining. Neurological deficit scores and brain infarct volumes were significantly less in EphA2(-/-) mice compared with WT controls. This protection by EphA2 deletion was associated with a comparative decrease in brain edema, blood-brain barrier damage, MMP-9 expression and leukocyte infiltration, and higher expression levels of the tight junction protein, zona occludens-1. Moreover, EphA2(-/-) brains had significantly lower levels of the pro-apoptotic proteins, cleaved caspase-3 and BAX, and higher levels of the anti-apoptotic protein, Bcl-2 as compared to WT group. We confirmed that isolated WT cortical neurons express the EphA2 receptor and its ligands (ephrin-A1-A3). Furthermore, expression of all four proteins was increased in WT primary cortical neurons following 24 h of glucose deprivation, and in the brains of WT mice following stroke. Glucose deprivation induced less cell death in primary neurons from EphA2(-/-) compared with WT mice. In conclusion, our data provide the first evidence that the EphA2 receptor directly contributes to blood-brain barrier damage and neuronal death following ischemic stroke.


  • Thundyil, J
  • Manzanero, S
  • Pavlovski, D
  • Cully, TR
  • Lok, KZ
  • Widiapradja, A
  • Chunduri, P
  • Jo, DG
  • Naruse, C
  • Asano, M
  • Launikonis, BS
  • Sobey, CG
  • Coulthard, MG
  • Arumugam, TV

publication date

  • 2013

has subject area