Chronic mevastatin modulates receptor-dependent vascular contraction in eNOS-deficient mice Academic Article uri icon

abstract

  • We tested the hypothesis that endothelial nitric oxide (NO) synthase (eNOS)-derived NO modulates rho-kinase-mediated vascular contraction. Because 3-hydroxy-3-methylglutaryl (HMG)-CoA-reductase inhibition can both upregulate eNOS expression and inhibit rhoA/rho-kinase function, a second hypothesis tested was that statin treatment modulates rho-kinase-mediated contraction and that this can occur independently of eNOS. Contractile responses to the receptor-dependent agonists serotonin and phenylephrine but not to the receptor-independent agent KCl were greater in aortic rings from eNOS-null (eNOS−/−) vs. wild-type (eNOS+/+) mice. Similarly enhanced responses were seen in eNOS+/+ rings after acute NOS inhibition. The rho-kinase inhibitor Y-27632 abolished or profoundly attenuated responses to receptor agonists in both eNOS+/+ and eNOS−/− rings, but responses in eNOS+/+ were more sensitive to Y-27632. Mevastatin treatment (20 mg/kg sc per day, 14 days) reduced responses to serotonin and phenylephrine in female mice of both strains. KCl-induced contractions were slightly smaller in eNOS+/+-derived aortic rings only. Levels of plasma cholesterol, and aortic expression of rhoA and rho-kinase, did not differ between groups. Thus eNOS-derived NO suppresses rhoA/rho-kinase-mediated vascular contraction. Moreover, a similar suppressive effect on rho-kinase-mediated vasoconstriction by statin therapy occurs independently of effects on eNOS or plasma cholesterol.

publication date

  • August 2004

has subject area