The effect of frequency-dependent microphone directionality on horizontal localization performance in hearing-aid users Academic Article uri icon


  • Frequency-dependent microphone directionality alters the spectral shape of sound as a function of arrival azimuth. The influence of this on horizontal-plane localization performance was investigated. Using a 360 degrees loudspeaker array and five stimuli with different spectral characteristics, localization performance was measured on 21 hearing-impaired listeners when wearing no hearing aids and aided with no directionality, partial (from 1 and 2 kHz) directionality, and full directionality. The test schemes were also evaluated in everyday life. Without hearing aids, localization accuracy was significantly poorer than normative data. Due to inaudibility of high-frequency energy, front/back reversals were prominent. Front/back reversals remained prominent when aided with omnidirectional microphones. For stimuli with low-frequency emphasis, directionality had no further effect on localization. For stimuli with sufficient mid- and high-frequency information, full directionality had a small positive effect on front/back localization but a negative effect on left/right localization. Partial directionality further improved front/back localization and had no significant effect on left/right localization. The field test revealed no significant effects. The alternative spectral cues provided by frequency-dependent directionality improve front/back localization in hearing-aid users.


  • Keidser, Gitte
  • O'Brien, Anna
  • Hain, Jens-Uwe
  • McLelland, Margot
  • Yeend, Ingrid

publication date

  • January 2009