Controllable Surface Modification of Poly(lactic-co-glycolic acid) (PLGA) by Hydrolysis or Aminolysis I:  Physical, Chemical, and Theoretical Aspects Academic Article uri icon

abstract

  • While biodegradable, biocompatible polyesters such as poly (lactic-co-glycolic acid) (PLGA) are popular materials for the manufacture of tissue engineering scaffolds, their surface properties are not particularly suitable for directed tissue growth. Although a number of approaches to chemically modify the PLGA surface have been reported, their applicability to soft tissue scaffolds, which combine large volumes, complex shapes, and extremely fine structures, is questionable. In this paper, we describe two wet-chemical methods, base hydrolysis and aminolysis, to introduce useful levels of carboxylic acid or primary and secondary amine groups, respectively, onto the surface of PLGA with minimal degradation. The effects of temperature, concentration, pH, and solvent type on the kinetics of these reactions are studied by following changes in the wettability of the PLGA using contact angle measurements. In addition, the treated surfaces are studied using X-ray photoelectron spectroscopy (XPS) to determine the effect on the surface chemical structure. Furthermore, we show using XPS analysis that these carboxyl and amine groups are readily activated to allow the covalent attachment of biological macromolecules.

publication date

  • March 2004