Variations in properties of atomic force microscope cantilevers fashioned from the same wafer Academic Article uri icon

abstract

  • Variations in the mechanical properties of nominally identical V-shaped atomic force microscope (AFM) cantilevers sourced from the same silicon nitride wafer have been quantified by measuring the spring constants, resonant frequencies and quality factors of 101 specimens as received from the manufacturer using the thermal spectrum method of Hutter and Bechhoefer. The addition of thin gold coatings always lowers the resonant frequency but the corresponding spring constant can either increase or decrease as a result. The observed broad spread of spring constant values and the lack of correlations between the resonant frequency and spring constant can be attributed in part to the non-uniformity of composition and material properties in the thinnest dimension of such cantilevers which arise from the manufacturing process. The effects of coatings are dictated by the competing influence of differences in mass density and Young's modulus between the silicon nitride and the gold coating. An implication of this study is that cantilever calibration methods based on the assumption of uniformity of material properties of the cantilever in the thinnest dimension are unlikely to be applicable for such cantilevers.

publication date

  • March 12, 2008