On the evolution of noise-dependent vocal plasticity in birds Academic Article uri icon

abstract

  • Signal plasticity is considered an important step in the evolution of animal communication. In acoustic communication, signal transmission is often constrained by background noise. One adaptation to evade acoustic signal masking is the Lombard effect, in which an animal increases its vocal amplitude in response to an increase in background noise. This form of signal plasticity has been found in mammals, including humans, and some birds, but not frogs. However, the evolution of the Lombard effect is still unclear. Here we demonstrate for the first time the Lombard effect in a phylogentically basal bird species, the tinamou Eudromia elegans. By doing so, we take a step towards reconstructing the evolutionary history of noise-dependent vocal plasticity in birds. Similar to humans, the tinamous also raised their vocal pitch in noise, irrespective of any release from signal masking. The occurrence of the Lombard effect in a basal bird group suggests that this form of vocal plasticity was present in the common ancestor of all living birds and thus evolved at least as early as 119 Ma.

authors

publication date

  • December 23, 2012