Confidence Intervals Academic Article uri icon

abstract

  • Most questions across science call for quantitative answers, ideally, a single best estimate plus information about the precision of that estimate. A confidence interval (CI) expresses both efficiently. Early experimental psychologists sought quantitative answers, but for the last half century psychology has been dominated by the nonquantitative, dichotomous thinking of null hypothesis significance testing (NHST). The authors argue that psychology should rejoin mainstream science by asking better questions – those that demand quantitative answers – and using CIs to answer them. They explain CIs and a range of ways to think about them and use them to interpret data, especially by considering CIs as prediction intervals, which provide information about replication. They explain how to calculate CIs on means, proportions, correlations, and standardized effect sizes, and illustrate symmetric and asymmetric CIs. They also argue that information provided by CIs is more useful than that provided by p values, or by values of Killeen’s prep, the probability of replication.

publication date

  • January 2009