The Lewis-Y Carbohydrate Antigen is Expressed by Many Human Tumors and Can Serve as a Target for Genetically Redirected T cells Despite the Presence of Soluble Antigen in Serum Academic Article uri icon


  • In this study we aimed to determine the suitability of the Lewis-Y carbohydrate antigen as a target for immunotherapy using genetically redirected T cells. Using the 3S193 monoclonal antibody and immunohistochemistry, Lewis-Y was found to be expressed on a range of tumors including 42% squamous cell lung carcinoma, 80% lung adenocarcinoma, 25% ovarian carcinoma, and 25% colorectal adenocarcinoma. Expression levels varied from low to intense on between 1% and 90% of tumor cells. Lewis- was also found in soluble form in sera from both normal donors and cancer patients using a newly developed enzyme-linked immunosorbent assay. Serum levels in patients was often less than 1 ng/mL, similar to normal donors, but approximately 30% of patients had soluble Lewis-Y levels exceeding 1 ng/mL and up to 9 ng/mL. Lewis-Y-specific human T cells were generated by genetic modification with a chimeric receptor encoding a single-chain humanized antibody linked to the T-cell signaling molecules, T-cell receptor-zeta, and CD28. T cells responded against the Lewis-Y antigen by cytokine secretion and cytolysis in response to tumor cells. Importantly, the T-cell response was not inhibited by patient serum containing soluble Lewis-Y. This study demonstrates that Lewis-Y is expressed on a large number of tumors and Lewis-Y-specific T cells can retain antitumor function in the presence of patient serum, indicating that this antigen is a suitable target for this form of therapy.


  • Westwood, Jennifer A
  • Murray, William K
  • Trivett, Melanie
  • Haynes, Nicole M
  • Solomon, Benjamin
  • Mileshkin, Linda
  • Ball, David
  • Michael, Michael
  • Burman, Angela
  • Mayura-Guru, Preethi
  • Trapani, Joseph A
  • Peinert, Stefan
  • Hönemann, Dirk
  • Miles Prince, H
  • Scott, Andrew M
  • Smyth, Mark J
  • Darcy, Phillip K
  • Kershaw, Michael H

publication date

  • April 2009