Targeted Bioactivity of Membrane-Anchored TNF by an Antibody-Derived TNF Fusion Protein Academic Article uri icon

abstract

  • We describe the generation and characterization of a fusion protein consisting of a humanized anti-fibroblast-activating protein (anti-FAP) Ab and human TNF replacing the IgG1 CH2/CH3 Fc domain. The construct was generated by recombinant DNA technology and preserved its IgG1-derived dimeric structure with the TNF molecule linked as a dimer. Expression in CHO cells was optimized in serum-free medium under GMP conditions to achieve production levels up to 15 mg/liter. Recognition of the FAP Ag by the construct was as good as that by the parental anti-FAP Ab. TNF signaling was induce able via both TNF receptor types. When acting in solution, the Ab-linked TNF dimer exhibited a 10- to 20-fold lower activity compared with recombinant trimeric TNF. However, after binding to FAP-expressing cells, immobilized anti-FAP-TNF dimer was equivalent to membrane-anchored TNF with regard to bioactivity. Amplification of TNF-related pathways by mimicking the membrane-integrated TNF signaling was detectable in various systems, such as apoptosis induction or tissue factor production. The difference in TNF receptor type 1 and 2 signaling by the anti-FAP-TNF construct correlated well with its Ag-bound or -soluble status. Translating the approach into a xenograft animal model (BALB/c nu/nu mice), we demonstrated low toxicity with measurable antitumor efficacy for the TNF fusion protein after i.v. application. Immunohistochemical analysis of tumor sections showed restricted TNF-mediated macrophage recruitment to the targeted tissue in a time- and dose-dependent manner. These data warrant transfer of the anti-FAP-TNF immunocytokine into clinical trials for the treatment of FAP-positive tumors.

authors

  • Bauer, Stefan
  • Adrian, Nicole
  • Williamson, Barbara
  • Panousis, Con
  • Fadle, Natalie
  • Smerd, Joanna
  • Fettah, Ilknur
  • Scott, Andrew M
  • Pfreundschuh, Michael
  • Renner, Christoph

publication date

  • March 15, 2004

has subject area