Importance of various training load measures on injury incidence of professional rugby league athletes Academic Article uri icon

abstract

  • To investigate the ability of various internal and external training-load (TL) monitoring measures to predict injury incidence among positional groups in professional rugby league athletes.TL and injury data were collected across 3 seasons (2013-2015) from 25 players competing in National Rugby League competition. Daily TL data were included in the analysis, including session rating of perceived exertion (sRPE-TL), total distance (TD), high-speed-running distance (>5 m/s), and high-metabolic-power distance (HPD; >20 W/kg). Rolling sums were calculated, nontraining days were removed, and athletes' corresponding injury status was marked as "available" or "unavailable." Linear (generalized estimating equations) and nonlinear (random forest; RF) statistical methods were adopted.Injury risk factors varied according to positional group. For adjustables, the TL variables associated most highly with injury were 7-d TD and 7-d HPD, whereas for hit-up forwards they were sRPE-TL ratio and 14-d TD. For outside backs, 21- and 28-d sRPE-TL were identified, and for wide-running forwards, sRPE-TL ratio. The individual RF models showed that the importance of the TL variables in injury incidence varied between athletes.Differences in risk factors were recognized between positional groups and individual athletes, likely due to varied physiological capacities and physical demands. Furthermore, these results suggest that robust machine-learning techniques can appropriately monitor injury risk in professional team-sport athletes.

publication date

  • 2016