Raf Kinase Inhibitor Protein Interacts with NF- B-Inducing Kinase and TAK1 and Inhibits NF- B Activation Academic Article uri icon

abstract

  • The Raf kinase inhibitor protein (RKIP) acts as a negative regulator of the mitogen-activated protein (MAP) kinase (MAPK) cascade initiated by Raf-1. RKIP inhibits the phosphorylation of MAP/extracellular signal-regulated kinase 1 (MEK1) by Raf-1 by disrupting the interaction between these two kinases. We show here that RKIP also antagonizes the signal transduction pathways that mediate the activation of the transcription factor nuclear factor kappa B (NF-kappaB) in response to stimulation with tumor necrosis factor alpha (TNF-alpha) or interleukin 1 beta. Modulation of RKIP expression levels affected NF-kappaB signaling independent of the MAPK pathway. Genetic epistasis analysis involving the ectopic expression of kinases acting in the NF-kappaB pathway indicated that RKIP acts upstream of the kinase complex that mediates the phosphorylation and inactivation of the inhibitor of NF-kappaB (IkappaB). In vitro kinase assays showed that RKIP antagonizes the activation of the IkappaB kinase (IKK) activity elicited by TNF-alpha. RKIP physically interacted with four kinases of the NF-kappaB activation pathway, NF-kappaB-inducing kinase, transforming growth factor beta-activated kinase 1, IKKalpha, and IKKbeta. This mode of action bears striking similarities to the interactions of RKIP with Raf-1 and MEK1 in the MAPK pathway. Emerging data from diverse organisms suggest that RKIP and RKIP-related proteins represent a new and evolutionarily highly conserved family of protein kinase regulators. Since the MAPK and NF-kappaB pathways have physiologically distinct roles, the function of RKIP may be, in part, to coordinate the regulation of these pathways.

authors

  • Yeung, KC
  • Rose, DW
  • Dhillon, AS
  • Yaros, D
  • Gustafsson, M
  • Chatterjee, D
  • McFerran, B
  • Wyche, J
  • Kolch, W
  • Sedivy, JM

publication date

  • November 1, 2001

has subject area