The effects of 1,25-dihydroxyvitamin D3 on colon cancer cells depend on RhoA-ROCK-p38MAPK-MSK signaling Academic Article uri icon

abstract

  • Many studies support a protective action of vitamin D against colon cancer. 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) exerts wide gene regulatory effects in human colon cancer cells. We previously reported that 1,25(OH)2D3 increases cytosolic Ca2+ concentration and transiently activates RhoA and its effector the Rho-associated coiled-kinase (ROCK), and later p38MAPK-MSK. We found that the inhibition of ROCK signaling by Y27632 or that of MSK by Ro318220 prevent the formation of epithelioid islands of SW480-ADH cells by 1,25(OH)2D3 and disrupts the adhesive phenotype of HT29 cells. ROCK and MSK inhibition also abrogates the induction of 1,25(OH)2D3 24-hydroxylase (CYP24), E-cadherin, and vinculin and the repression of cyclin D1 by 1,25(OH)2D3. Moreover, 1,25(OH)2D3 does not promote the localization of the tight junction protein occludin at the plasma membrane in cells expressing a dominant negative RhoA (N19-RhoA). In addition, 1,25(OH)2D3 specifically increases the level of the cysteine protease-inhibitor cystatin D, whereas that of cystatin SN is unaffected. The increase of cystatin D protein caused by 1,25(OH)2D3 is abrogated in N19-RhoA cells. Thus, activation of the RhoA-ROCK-p38MAPK-MSK signaling pathway is essential for the regulation of the phenotype and of the CST5/cystatin D candidate tumor suppressor and other target genes by 1,25(OH)2D3 in colon cancer cells.

authors

  • Alvarez Diaz, Silvia
  • Ordóñez-Morán, Paloma
  • Álvarez-Díaz, Silvia
  • Valle, Noelia
  • Larriba, María Jesús
  • Bonilla, Félix
  • Muñoz, Alberto

publication date

  • July 2010

has subject area