Free vibration of axially loaded composite beams using a four-unknown shear and normal deformation theory
Academic Article
-
- Overview
-
- Research
-
- Identity
-
- Additional Document Info
-
- View All
-
Overview
abstract
-
© 2017 Elsevier Ltd This paper presents free vibration of composite beams under axial load using a four-unknown shear and normal deformation theory. The constitutive equation is reduced from the 3D stress-strain relations of orthotropic lamina. The governing differential equations of motion are derived using the Hamilton's principle. A two-node C1 beam element is developed by using a mixed interpolation with linear and Hermite-cubic polynomials for unknown variables. Numerical results are computed and compared with those available in the literature and commercial finite element software (ANSYS and ABAQUS). The comparison study illustrates the effects of normal strain, lay-ups and Poisson's ratio on the natural frequencies and load-frequency curves of composite beams.
status
publication date
has subject area
published in
Research
keywords
-
ARBITRARY BOUNDARY-CONDITIONS
-
BEHAVIOR
-
BUCKLING ANALYSIS
-
Composite beams
-
FORMULATION
-
MODEL
-
Materials Science
-
Materials Science, Composites
-
Mechanics
-
Normal strain
-
PLY LAMINATED BEAMS
-
Poisson effect
-
RITZ METHOD
-
SANDWICH BEAMS
-
SINUS FINITE-ELEMENTS
-
STRESS CONTINUITY
-
Science & Technology
-
Shear and normal deformation theory
-
Technology
Identity
Digital Object Identifier (DOI)
Additional Document Info
Publisher
start page
end page
volume