Change detection is impaired in children with dyslexia Academic Article uri icon


  • The severe deficits in rapid automatized naming demonstrated by children with developmental dyslexia has usually been interpreted in terms of a deficit in speed of access to the lexicon rather than as a possible deficit in speed of visual object recognition. Yet fluent reading requires rapid visual recognition and semantic interpretation of new letters and words appearing in successive fixations of the eyes. Thus we wondered whether change detection performance was related to reading ability. We investigated whether children with developmental dyslexia (DD) were less able to detect change in a simple display--gap--display paradigm than normal reading (NR) children of the same age and children with impaired reading and mentation (LD). In a first experimental phase, the DDs required a longer initial exposure of four letter items in order to detect change of a single letter at a level of 71% correct, compared with NRs performing at the same level. Thus the deficit in reading in DD is associated with a deficit in early processes associated with visual recognition. In a second experimental phase (using the individual target display exposures measured in the first phase), cues appeared during the 250 ms gap for a period of either 0 (no cue), 50 or 200 ms immediately prior to the presentation of the second (comparison) display. Children of all groups showed dependence on the presence of the cue to help make a judgement of change (versus no change), with the NRs least affected. When change was detected in the presence of a cue, the NRs were better able to identify the new letter than either of the other groups. However, only about 50% of the correct detections were accompanied by a correct identification. Despite published reports of a mini-neglect for left visual field in dyslexic adults, none of our groups showed such an effect. However, a significant upper visual field (UpVF) advantage in change detection performance was found across groups, which we interpret in terms of the interactions of the ventral and dorsal streams.

publication date

  • February 20, 2003