Two-dimensional shrinking target problem in beta-dynamical systems Academic Article uri icon

abstract

  • In this paper, we investigate the two-dimensional shrinking target problem in beta-dynamical systems. Let $\unicode[STIX]{x1D6FD}>1$ be a real number and define the $\unicode[STIX]{x1D6FD}$-transformation on $[0,1]$ by $T_{\unicode[STIX]{x1D6FD}}:x\rightarrow \unicode[STIX]{x1D6FD}x\;\text{mod}\;1$. Let $\unicode[STIX]{x1D6F9}_{i}$ ($i=1,2$) be two positive functions on $\mathbb{N}$ such that $\unicode[STIX]{x1D6F9}_{i}\rightarrow 0$ when $n\rightarrow \infty$. We determine the Lebesgue measure and Hausdorff dimension for the $\limsup$ set $$\begin{eqnarray}W(T_{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6F9}_{1},\unicode[STIX]{x1D6F9}_{2})=\{(x,y)\in [0,1]^{2}:|T_{\unicode[STIX]{x1D6FD}}^{n}x-x_{0}|<\unicode[STIX]{x1D6F9}_{1}(n),|T_{\unicode[STIX]{x1D6FD}}^{n}y-y_{0}|<\unicode[STIX]{x1D6F9}_{2}(n)\text{ for infinitely many }n\in \mathbb{N}\}\end{eqnarray}$$ for any fixed $x_{0},y_{0}\in [0,1]$.

publication date

  • 2018