A repeat sequence domain of the ring-exported protein-1 of P lasmodium falciparum controls export machinery architecture and virulence protein trafficking Academic Article uri icon

abstract

  • The malaria parasite Plasmodium falciparum dramatically remodels its host red blood cell to enhance its own survival, using a secretory membrane system that it establishes outside its own cell. Cisternal organelles, called Maurer's clefts, act as a staging point for the forward trafficking of virulence proteins to the red blood cell (RBC) membrane. The Ring-EXported Protein-1 (REX1) is a Maurer's cleft resident protein. We show that inducible knockdown of REX1 causes stacking of Maurer's cleft cisternae without disrupting the organization of the knob-associated histidine-rich protein at the RBC membrane. Genetic dissection of the REX1 sequence shows that loss of a repeat sequence domain results in the formation of giant Maurer's cleft stacks. The stacked Maurer's clefts are decorated with tether-like structures and retain the ability to dock onto the RBC membrane skeleton. The REX1 mutant parasites show deficient export of the major virulence protein, PfEMP1, to the red blood cell surface and markedly reduced binding to the endothelial cell receptor, CD36. REX1 is predicted to form a largely α-helical structure, with a repetitive charge pattern in the repeat sequence domain, providing potential insights into the role of REX1 in Maurer's cleft sculpting.

authors

  • McHugh, Emma
  • Batinovic, Steven
  • Hanssen, Eric
  • McMillan, Paul J
  • Kenny, Shannon
  • Griffin, Michael DW
  • Crawford, Simon
  • Trenholme, Katharine R
  • Gardiner, Donald L
  • Dixon, Matthew WA
  • Tilley, Leann

publication date

  • 2015