Glycan Profiling of Plant Cell Wall Polymers using Microarrays Academic Article uri icon

abstract

  • Plant cell walls are complex matrixes of heterogeneous glycans which play an important role in the physiology and development of plants and provide the raw materials for human societies (e.g. wood, paper, textile and biofuel industries)(1,2). However, understanding the biosynthesis and function of these components remains challenging. Cell wall glycans are chemically and conformationally diverse due to the complexity of their building blocks, the glycosyl residues. These form linkages at multiple positions and differ in ring structure, isomeric or anomeric configuration, and in addition, are substituted with an array of non-sugar residues. Glycan composition varies in different cell and/or tissue types or even sub-domains of a single cell wall(3). Furthermore, their composition is also modified during development(1), or in response to environmental cues(4). In excess of 2,000 genes have Plant cell walls are complex matrixes of heterogeneous glycans been predicted to be involved in cell wall glycan biosynthesis and modification in Arabidopsis(5). However, relatively few of the biosynthetic genes have been functionally characterized (4,5). Reverse genetics approaches are difficult because the genes are often differentially expressed, often at low levels, between cell types(6). Also, mutant studies are often hindered by gene redundancy or compensatory mechanisms to ensure appropriate cell wall function is maintained(7). Thus novel approaches are needed to rapidly characterise the diverse range of glycan structures and to facilitate functional genomics approaches to understanding cell wall biosynthesis and modification. Monoclonal antibodies (mAbs)(8,9) have emerged as an important tool for determining glycan structure and distribution in plants. These recognise distinct epitopes present within major classes of plant cell wall glycans, including pectins, xyloglucans, xylans, mannans, glucans and arabinogalactans. Recently their use has been extended to large-scale screening experiments to determine the relative abundance of glycans in a broad range of plant and tissue types simultaneously(9,10,11). Here we present a microarray-based glycan screening method called Comprehensive Microarray Polymer Profiling (CoMPP) (Figures 1 & 2)(10,11) that enables multiple samples (100 sec) to be screened using a miniaturised microarray platform with reduced reagent and sample volumes. The spot signals on the microarray can be formally quantified to give semi-quantitative data about glycan epitope occurrence. This approach is well suited to tracking glycan changes in complex biological systems(12) and providing a global overview of cell wall composition particularly when prior knowledge of this is unavailable.

authors

  • Moller, Isabel E
  • Pettolino, Filomena A
  • Hart, Charlie
  • Lampugnani, Edwin R
  • Willats, William GT
  • Bacic, Antony

publication date

  • December 1, 2012