Intrinsic Differences in the Proliferation of Naive and Memory Human B Cells as a Mechanism for Enhanced Secondary Immune Responses Academic Article uri icon

abstract

  • Humoral immune responses elicited after secondary exposure to immunizing Ag are characterized by robust and elevated reactivity of memory B cells that exceed those of naive B cells during the primary response. The mechanism underlying this difference in responsiveness of naive vs memory B cells remains unclear. We have quantitated the response of naive and memory human B cells after in vitro stimulation with T cell-derived stimuli. In response to stimulation with CD40 ligand alone or with IL-10, both IgM-expressing and Ig isotype-switched memory B cells entered their first division 20-30 h earlier than did naive B cells. In contrast, the time spent traversing subsequent divisions was similar. Consistent with previous studies, only memory cells differentiated to CD38(+) blasts in a manner that increased with consecutive division number. These differentiated CD38(+) B cells divided faster than did CD38(-) memory B cell blasts. Proliferation of CD40 ligand-stimulated naive B cells as well as both CD38(+) and CD38(-) cells present in cultures of memory B cells was increased by IL-10. In contrast, IL-2 enhanced proliferation of CD38(-) and CD38(+) memory B cell blasts, but not naive cells. Thus, memory B cells possess an intrinsic advantage over naive B cells in both the time to initiate a response and in the division-based rate of effector cell development. These differences help explain the accelerated Ab response exhibited by memory B cells after secondary challenge by an invading pathogen, a hallmark of immunological memory.

publication date

  • January 15, 2003

has subject area