BLOCKING OF DELIVERY OF THE ANTIGEN-MEDIATED SIGNAL TO THE NUCLEUS OF T CELLS BY CYCLOSPORINS Academic Article uri icon

abstract

  • Cyclosporine (CsA) inhibits release of interleukin 2 (IL-2) and hemopoietic growth activities such as interleukin 3 (IL-3) from major histocompatibility complex (MHC)-antigen-activated T cells. Production of both lymphokines appears to be coordinately regulated; the antigen dose response, T cell dose response, and time course of lymphokine appearance are similar. The triggering of lymphokine production by these cells is solely dependent on T cell-target cell interaction, as the T cell dose response curve indicates that no cooperation occurs between T cells, and any metabolic contribution by the target cell was eliminated by ultraviolet irradiation. This interaction triggers the transcription of lymphokine-encoding mRNA. The process of lymphokine release can be divided into 4 steps: Antigen binds to the T cell; a signal is transferred to the cell nucleus; transcription of lymphokine-encoding mRNA occurs; and intact lymphokine is synthesized and secreted. CsA inhibits antigen triggered lymphokine production. However, it does not inhibit lymphokine release from the constitutively producing tumor cell lines WEHI-3 (which releases IL-3) and MLA 144 (which produces IL-2). Thus CsA has no effects on the lymphokine secretion process or any direct action upon lymphokine-coding mRNA. CsA does not affect antigen recognition during cell-mediated cytotoxicity. Therefore, CsA acts after antigen binding and before transcription of lymphokine-encoding mRNA. That is CsA blocks the transmission of the antigen signal. This information is used to show that this CsA-sensitive signal is required continuously to maintain the T cell in a lymphokine-secreting state.

authors

publication date

  • May 1987