The effect of physiologically occurring cations upon aequorin light emission. Determination of the binding constants Academic Article uri icon

abstract

  • 1. The effect of K+, Na+, Mg2+ and pH upon the rate of aequorin utilization has been investigated in the presence of Ca2+. 2. The aequorin light emission in a medium simulating the in vivo cationic conditions for barnacle muscle fibres indicates that two Ca2+ are apparently involved in this process for free calcium concentrations higher than approx. 10(-5) M. However, for free calcium concentrations lower than 10(-6) M, the intensity of light emitted by aequorin shows a steeper dependency upon [Ca2+] than the square low relationship, indicating that a third Ca2+ should be involved in the process of aequorin light emission, as it has been previously predicted (Moisescu, D.G., Ashley, C.C. and Campbell, A.K. (1975) Biochim. Biophys. Acta. 396, 133-140). 3. The inhibitory effect of physiologically occurring cations upon the aequorin light emission can be explained by the cooperative action of two cations, competing with Ca2+ for the reactive sites on aequorin. 4. At a given concentration, Na2+ was found to have a stronger inhibitory effect upon the aequoring light emission than K+. 5. The experiments indicate a strong interaction between Na+ and K+ in this inhibitory process, since for a given total concentration of monovalent cations, a mixture containing both Na+ and K+ has a larger inhibitory effect on the aequorin light response than solutions containing either Na+ or K+ alone. 6. All other interactions between K+, Na+, H+ and Mg2+ appear to be weak. 7. The reaction schemes used for the explanation of these and other published results on aequorin (Moisescu, D.G., Ashley, C.C. and Campbell, A.K. (1975) Biochim. Biophys, Acta 396, 133-140 and Blinks, J.R. (1973) Eur. J. Cardiol. 1, 135-142) are described, and the 'absolute' binding constants of all physiologically occurring cations for aequorin have been determined. 8. Based on these parameters one can make accurate quantitative predictions for the aequoring light response under a variety of ionic conditions, and this suggests that it is possible to determine absolute free calcium concentrations providing that the ionic composition of the solutions is known, and that the relative rate of aequorin utilization is higher than 0.005.

publication date

  • May 1977