Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile Deschampsia antarctica E. Desv. Academic Article uri icon

abstract

  • The cryophilic Antarctic hair grass, Deschampsia antarctica E. Desv., one of two higher plants indigenous to Antarctica, represents a unique resource for the study of freeze tolerance mechanisms. We have previously characterized a multi-gene family in D. antarctica encoding ice recrystallization inhibition proteins (IRIPs) whose transcript levels are responsive to cold acclimation, and whose products confer ice recrystallization inhibition (RI) activity that can account for activity seen in cold acclimated plants. We used molecular and physiological analyses to investigate temporal responses of D. antarctica to cold acclimation and de-acclimation, and sub-zero acclimation. Quantitative profiling revealed that IRIP transcript levels significantly increased and decreased within hours of cold acclimation and de-acclimation, respectively, becoming up to 1000-fold more abundant in fully acclimated plants. Western analysis detected three major immuno-reactive bands whose pattern of accumulation mirrored that of transcript. These data correlated with the onset and decline of RI activity in acclimated and de-acclimated leaves. Plant survival-based testing revealed that cold acclimation enhanced freeze tolerance by 5 °C within 4 d, and that sub-zero acclimation conferred an additional 3 °C of tolerance. Thus, D. antarctica is highly responsive to temperature fluctuations, able to rapidly deploy IRIP based RI activity and enhance its freeze tolerance.

publication date

  • April 2012