Mitochondrial targeting of the Arabidopsis F1-ATPase γ-subunit via multiple compensatory and synergistic presequence motifs Academic Article uri icon

abstract

  • The majority of mitochondrial proteins are encoded in the nuclear genome and imported into mitochondria posttranslationally from the cytosol. An N-terminal presequence functions as the signal for the import of mitochondrial proteins. However, the functional information in the presequence remains elusive. This study reports the identification of critical sequence motifs from the presequence of Arabidopsis thaliana F1-ATPase γ-subunit (pFAγ). pFAγ was divided into six 10-amino acid segments, designated P1 to P6 from the N to the C terminus, each of which was further divided into two 5-amino acid subdivisions. These P segments and their subdivisions were substituted with Ala residues and fused to green fluorescent protein (GFP). Protoplast targeting experiments using these GFP constructs revealed that pFAγ contains several functional sequence motifs that are dispersed throughout the presequence. The sequence motifs DQEEG (P4a) and VVRNR (P5b) were involved in translocation across the mitochondrial membranes. The sequence motifs IAARP (P2b) and IAAIR (P3a) participated in binding to mitochondria. The sequence motifs RLLPS (P2a) and SISTQ (P5a) assisted in pulling proteins into the matrix, and the sequence motif IAARP (P2b) functioned in Tom20-dependent import. In addition, these sequence motifs exhibit complex relationships, including synergistic functions. Thus, multiple sequence motifs dispersed throughout the presequence are proposed to function cooperatively during protein import into mitochondria.

authors

  • Lee, S
  • Lee, DW
  • Yoo, YJ
  • Duncan, O
  • Oh, YJ
  • Lee, YJ
  • Lee, G
  • Whelan, J
  • Hwang, I

publication date

  • 2012