Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves Academic Article uri icon

abstract

  • • Proteins possessing the SPX domain are found in several proteins involved in inorganic phosphate (Pi) transport and signalling in yeast and plants. Although the functions of several SPX-domain protein subfamilies have recently been uncovered, the role of the SPX-MFS subfamily is still unclear. • Using quantitative RT-PCR analysis, we studied the regulation of SPX-MFS gene expression by the central regulator, OsPHR2 and Pi starvation. The function of OsSPX-MFS1 in Pi homeostasis was analysed using an OsSPX-MFS1 mutant (mfs1) and osa-miR827 overexpression line (miR827-Oe). Finally, heterologous complementation of a yeast mutant impaired in Pi transporter was used to assess the capacity of OsSPX-MFS1 to transport Pi. • Transcript analyses revealed that members of the SPX-MFS family were mainly expressed in the shoots, with OsSPX-MFS1 and OsSPX-MFS3 being suppressed by Pi deficiency, while OsSPX-MFS2 was induced. Mutation in OsSPX-MFS1 (mfs1) and overexpression of the upstream miR827 (miR827-Oe) plants impaired Pi homeostasis in the leaves. In addition, studies in yeast revealed that OsSPX-MFS1 may be involved in Pi transport. • The results suggest that OsSPX-MFS1 is a key player in maintaining Pi homeostasis in the leaves, potentially acting as a Pi transporter.

authors

  • Wang, Chuang
  • Huang, Wei
  • Ying, Yinghui
  • Li, Shuai
  • Secco, David
  • Tyerman, Steve
  • Whelan, James
  • Shou, Huixia

publication date

  • October 2012

has subject area