Ecological Studies of the Endangered Rutidosis Leptorrhynchoides .I. Seed Production, Soil Seed Bank Dynamics, Population Density and Their Effects on Recruitment Academic Article uri icon

abstract

  • The seasonal dynamics of the soil seed bank of Rutidosis leptorrhynchoides F.Muell. were studied by the seedling emergence technique. Seed longevity in soil was quantified in a seed burial and retrieval experiment. The importance of annual seed production to recruitment was also determined over a 2-year-period, as was the impact of conspecific neighbour density on seed production per inflorescence. Rutidosis leptorrhynchoides appears to form a transient seed bank with little capacity to store germinable seeds in the soil from year to year. No seedlings were observed in soil sampled after the autumn germination pulse and no viable seed was present in the soil within 16 weeks of burial. The rate of seed loss was similar when seed was buried under all intact grassland canopy and in 0.25m2 canopy gaps. It appears that most seeds simply rot in moist soil or are predated by soil invertebrates. Seedling recruitment was at least 15 times greater in plots where natural seed input occurred than where it was curtailed. Less than 10% of seed shed resulted in seedling emergence. It is suggested that recruitment in the large populations studied was limited by germination rather than by microsite availability for seedling survival. Population density had an impact on seed production with sparsely distributed individuals producing fewer seeds per inflorescence than plants from denser colonies, although there was much variation. Sparse plants produced significantly fewer seeds per inflorescence than hand crosspollinated heads suggesting reduced pollinator efficacy in these colonies relative to larger colonies where there was no such difference. Rutidosis leptorrhynchoides is dependent on the maintenance of the standing population for recruitment. Any factors that influence flowering and subsequent seed production will limit the ability of the species to regenerate. Over sufficient time, this could lead to the localised extinction of the species and may explain why R. leptorrhynchoides has failed to reappear in remnants where a suitable fire regime has been re-implemented after a period of management unfavourable to the survival, flowering and regeneration of this species.

publication date

  • 1995