Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk Academic Article uri icon

abstract

  • BACKGROUND:The use of Cardiovascular Disease (CVD) risk estimation scores in primary prevention has long been established. However, their performance still remains a matter of concern. The aim of this study was to explore the potential of using ML methodologies on CVD prediction, especially compared to established risk tool, the HellenicSCORE. METHODS:Data from the ATTICA prospective study (n = 2020 adults), enrolled during 2001-02 and followed-up in 2011-12 were used. Three different machine-learning classifiers (k-NN, random forest, and decision tree) were trained and evaluated against 10-year CVD incidence, in comparison with the HellenicSCORE tool (a calibration of the ESC SCORE). Training datasets, consisting from 16 variables to only 5 variables, were chosen, with or without bootstrapping, in an attempt to achieve the best overall performance for the machine learning classifiers. RESULTS:Depending on the classifier and the training dataset the outcome varied in efficiency but was comparable between the two methodological approaches. In particular, the HellenicSCORE showed accuracy 85%, specificity 20%, sensitivity 97%, positive predictive value 87%, and negative predictive value 58%, whereas for the machine learning methodologies, accuracy ranged from 65 to 84%, specificity from 46 to 56%, sensitivity from 67 to 89%, positive predictive value from 89 to 91%, and negative predictive value from 24 to 45%; random forest gave the best results, while the k-NN gave the poorest results. CONCLUSIONS:The alternative approach of machine learning classification produced results comparable to that of risk prediction scores and, thus, it can be used as a method of CVD prediction, taking into consideration the advantages that machine learning methodologies may offer.

authors

  • Dimopoulos, AC
  • Nikolaidou, M
  • Caballero, FF
  • Engchuan, W
  • Sanchez-Niubo, A
  • Arndt, H
  • Ayuso-Mateos, JL
  • Haro, JM
  • Chatterji, S
  • Georgousopoulou, EN
  • Pitsavos, C
  • Panagiotakos, Demosthenes B

publication date

  • 2018