Cytosine Methylation Enhances Mitoxantrone-DNA Adduct Formation at CpG Dinucleotides Academic Article uri icon

abstract

  • Recently, we have shown that mitoxantrone can be activated by formaldehyde in vitro to form DNA adducts that are specific for CpG and CpA sites in DNA. The CpG specificity of adduct formation prompted investigations into the effect of cytosine methylation (CpG) on adduct formation, since the majority of CpG dinucleotides in the mammalian genome are methylated and hypermethylation in subsets of genes is associated with various neoplasms. Upon methylation of a 512-base pair DNA fragment (containing the lac UV5 promoter) using HpaII methylase, three CCGG sites downstream of the promoter were methylated at C5 of the internal cytosine residue. In vitro transcription studies of mitoxantrone-reacted DNA revealed a 3-fold enhancement in transcriptional blockage (and hence adduct formation) exclusively at these methylated sites. In vitro cross-linking assays also revealed that methylation enhanced mitoxantrone adduct formation by 2-3-fold, and methylation of cytosine at a single potential drug binding site on a duplex oligonucleotide also enhanced adduct levels by 3-fold. Collectively, these results indicate preferential adduct formation at methylated CpG sites. However, adducts at these methylated sites exhibited the same stability as nonmethylated sites, suggesting that cytosine methylation increases drug accessibility to DNA rather than being involved in kinetic stabilization of the adduct.

publication date

  • May 11, 2001

has subject area