Mitoxantrone Mediates Demethylation and Re-Expression of Cyclin D2, Estrogen Receptor 14.3.3 Sigma In Breast Cancer Cells Academic Article uri icon

abstract

  • In addition to its action as a topoisomerase II poison, mitoxantrone is activated by formaldehyde to bind DNA, forming DNA-adducts specifically at 5'CpG and CpA sequences, with an enhancement of adducts at methylated CpG sites. The butyric acid prodrug, AN-9 (pivaloyloxymethyl butyrate), releases formaldehyde upon cellular hydrolysis and our previous studies have shown that mitoxantrone acts synergistically with AN-9 in cytotoxicity assays. In this paper, we investigated the impact of methylation levels in the cell on mitoxantrone-induced cytotoxicity using the colon cancer cell line HCT116 and its derived DNA methyltransferase (DNMT) 1 and DNMT 3a knockout (DKO8) cell line. We found that decreased methylation levels in the DNMT-null cells led to at least a 2-fold reduction in mitoxantrone-induced cytotoxicity. Next, we studied the impact of mitox-antrone alone, and in combination with AN-9, on hypermethylated genes and their mRNA expression in breast cancer cells. Using methylation-specific PCR and RT-PCR, we found that mitoxantrone treatment of breast cancer cell lines resulted in demethylation of the 14.3.3s, Cyclin D2 and ERa genes, followed by re-expression of their mRNA. The effect of mitoxantrone on re-expression of key genes involved in cell cycle regulation, and ensuing death of the cells may be an additional, previously undiscovered mechanism of action of mitoxantrone.

publication date

  • May 20, 2003

has subject area