Functional implications of modifying RyR-activating peptides for membrane permeability Academic Article uri icon


  • 1. Our aim was to determine whether lipoamino acid conjugation of peptides that are high-affinity activators of ryanodine receptor (RyR) channels would (a) render the peptides membrane permeable, (b) alter their structure or (a) reduce their activity. The peptides correspond to the A region of the II-III loop of the skeletal dihydropyridine receptor. 2. The lipoamino acid conjugation increased the apparent permeability of the peptide across the Caco-2 cell monolayer by up to approximately 20-fold. 3. Nuclear magnetic resonance showed that the alpha-helical structure of critical basic residues, required for optimal activation of RyRs, was retained after conjugation. 4. The conjugated peptides were more effective in enhancing resting Ca2+ release, Ca2+-induced Ca2+ release and caffeine-induced Ca2+ release from isolated sarcoplasmic reticulum (SR) than their unconjugated counterparts, and significantly enhanced caffeine-induced Ca2+ release from mechanically skinned extensor digitorum longus (EDL) fibres. 5. The effect of both conjugated and unconjugated peptides on Ca2+ release from skeletal SR was 30-fold greater than their effect on either cardiac Ca2+ release or on the Ca2+ Mg2+ ATPase. 6. A small and very low affinity effect of the peptide in slowing Ca2+ uptake by the Ca2+, Mg2+ ATPase was exacerbated by lipoamino acid conjugation in both isolated SR and in skinned EDL fibres. 7. The results show that lipoamino acid conjugation of A region peptides increases their membrane permeability without impairing their structure or efficacy in activating skeletal and cardiac RyRs.


  • Dulhunty, Angela F
  • Cengia, Louise
  • Young, Jacqui
  • Pace, Suzy M
  • Harvey, Peta J
  • Lamb, Graham D
  • Chan, Yiu-Ngok
  • Wimmer, Norbert
  • Toth, Istvan
  • Casarotto, Marco G

publication date

  • March 2005

has subject area