The effect of 2,5-di-(tert-butyl)-1,4-hydroquinone on force responses and the contractile apparatus in mechanically skinned muscle fibres of the rat and toad Academic Article uri icon

abstract

  • In this study, we investigated the effect of the Ca2+ pump inhibitor, 2,5-di-(tert-butyl)-1,4-hydroquinone on the function of the contractile apparatus, Ca2+ uptake, the permeability of the sarcoplasmic reticulum to Ca2+ and excitation-contraction coupling, in mechanically skinned muscle fibres of the rat and toad. 2,5-di-(tert-butyl)-1,4-hydroquinone had no significant effect on the maximum force and Ca2+ sensitivity of the contractile apparatus in rat and toad fibres at concentrations of 20 and 5 microM respectively. In rat fibres, 2,5-di-(tert-butyl)-1,4-hydroquinone was found to inhibit sarcoplasmic reticulum Ca2+ loading in a dose dependent manner, with a half maximal effect at 2 microM. In toad fibres, 5 microM 2,5-di-(tert-butyl)-1,4-hydroquinone completely blocked sarcoplasmic reticulum Ca2+ loading. Exposure to 5 mM BAPTA revealed a small resting sarcoplasmic reticulum Ca2+ leak in unstimulated rat fibres. This Ca2+ leak was not significantly affected by the presence of 20 microM 2,5-di-(tert-butyl)-1,4-hydroquinone, suggesting that 2,5-di-(tert-butyl)-1,4-hydroquinone does not substantially block or activate the sarcoplasmic reticulum Ca2+ release channels. Depolarisation-induced force responses elicited in rat and toad skinned fibres were not significantly affected by 0.5 microM 2,5-di-(tert-butyl)-1, 4-hydroquinone. In the rat fibres, 5 and 20 microM 2,5-di-(tert-butyl)-1,4-hydroquinone greatly increased the peak and duration of initial depolarisation-induced force responses, while subsequent responses were reduced. 2,5-di-(tert-butyl)-1,4-hydroquinone did not affect excitation contraction coupling, as depolarisation-induced force responses similar to initial controls could be elicited after 2,5-di-(tert-butyl)-1,4-hydroquinone exposure, provided that the initial Ca2+ release in 2,5-di-(tert-butyl)-1,4-hydroquinone was chelated with 0.5 mM EGTA (to prevent Ca(2+)-dependent damage) and the sarcoplasmic reticulum was reloaded with Ca2+. In the toad fibres, 5 microM 2,5-di-(tert-butyl)-1, 4-hydroquinone had a similar effect on depolarisation-induced force responses to that observed at 20 microM 2,5-di-(tert-butyl)-1, 4-hydroquinone in rat fibres. This study shows that 2,5-di-(tert-butyl)-1,4-hydroquinone specifically and reversibly inhibits the sarcoplasmic reticulum Ca2+ pump in skeletal muscle and therefore, 2,5-di-(tert-butyl)-1,4-hydroquinone could be a valuable tool for investigating the role of the sarcoplasmic reticulum in Ca2+ homeostasis in skeletal muscle.

publication date

  • February 1996