The origin and loss of the ubiquitin activating enzyme gene on the mammalian Y chromosome Academic Article uri icon

abstract

  • Mammalian sex chromosomes are thought to be descended from a homologous pair of autosomes: a testis-determining allele which defined the Y chromosome arose, recombination between the nascent X and Y chromosomes became restricted and the Y chromosome gradually lost its non-essential genetic functions. This model was originally inferred from the occurrence of few Y-linked genetic traits, pairing of the X and Y chromosomes during male meiosis and, more recently, the existence of X-Y homologous genes. The comparative analysis of such genes is a means by which the validity of this model can be evaluated. One well-studied example of an X-Y homologous gene is the ubiquitin activating enzyme gene ( UBE1 ), which is X-linked with a distinct Y-linked gene in many eutherian ('placental') and metatherian (marsupial) mammals. Nonetheless, no UBE1 homologue has yet been detected on the human Y chromosome. Here we describe a more extensive study of UBE1 homologues in primates and a prototherian mammal, the platypus. Our findings indicate that UBE1 lies within the X-Y pairing segment of the platypus but is absent from the human Y chromosome, having been lost from the Y chromosome during evolution of the primate lineage. Thus UBE1 illustrates the key steps of 'autosomal to X-specific' evolution of genes on the sex chromosomes.

publication date

  • March 1, 1998