Shared DNA sequences between the X and Y chromosomes in the tammar wallaby - evidence for independent additions to eutherian and marsupial sex chromosomes Academic Article uri icon


  • Marsupial sex chromosomes are smaller than their eutherian counterparts and are thought to reflect an ancestral mammalian X and Y. The gene content of this original X is represented largely by the long arm of the human X chromosome. Genes on the short arm of the human X are autosomal in marsupials and monotremes, and represent a recent addition to the eutherian X and Y. The marsupial X and Y apparently lack a pseudoautosomal region and show only end-to-end pairing at meiosis. However, the sex chromosomes of macropodid marsupials (kangaroos and wallabies) are larger than the sex chromosomes of other groups, and a nucleolus organizer is present on the X and occasionally the Y. Chromosome painting using DNA from sorted and microdissected wallaby X and Y chromosomes reveals homologous sequences on the tammar X and Y chromosomes, concentrated on the long arm of the Y chromosome and short arm of the X. Ribosomal DNA sequences were detected by fluorescence in situ hybridization on the wallaby Xp but not the Y. Since no chiasmata have been observed in marsupial sex chromosomes, it is unlikely that these shared sequences act as a pseudoautosomal region within which crossing over may occur, but they may be required for end-to-end associations. The shared region of wallaby X and Y chromosomes bears no homology with the recently added region of the eutherian sex chromosomes, so we conclude that independent additions occurred to both sex chromosomes in a eutherian and macropodid ancestor, as predicted by the addition-attrition hypothesis of sex chromosome evolution.

publication date

  • July 18, 1997