The in vitro preconditioning of myoblasts to enhance subsequent survival in an in vivo tissue engineering chamber model Academic Article uri icon


  • The effects of in vitro preconditioning protocols on the ultimate survival of myoblasts implanted in an in vivo tissue engineering chamber were examined. In vitro testing: L6 myoblasts were preconditioned by heat (42 °C; 1.5 h); hypoxia (<8% O(2); 1.5 h); or nitric oxide donors: S-nitroso-N-acetylpenicillamine (SNAP, 200 μM, 1.5 h) or 1-[N-(2-aminoethyl)-N-(2-aminoethyl)amino]-diazen-1-ium-1,2-diolate (DETA-NONOate, 500 μM, 7 h). Following a rest phase preconditioned cells were exposed to 24 h hypoxia, and demonstrated minimal overall cell loss, whilst controls (not preconditioned, but exposed to 24 h hypoxia) demonstrated a 44% cell loss. Phosphoimmunoblot analysis of pro-survival signaling pathways revealed significant activation of serine threonine kinase Akt with DETA-NONOate (p < 0.01) and heat preconditioning (p < 0.05). DETA-NONOate also activated ERK 1/2 signaling (p < 0.05). In vivo implantation: 100,000 preconditioned (heat, hypoxia, or DETA-NONOate) myoblasts were implanted in SCID mouse tissue engineering chambers. 100,000 (not preconditioned) myoblasts were implanted in control chambers. At 3 weeks, morphometric assessment of surviving myoblasts indicated myoblast percent volume (p = 0.012) and myoblasts/mm(2) (p = 0.0005) overall significantly increased in preconditioned myoblast chambers compared to control, with DETA-NONOate-preconditioned myoblasts demonstrating the greatest increase in survival (p = 0.007 and p = 0.001 respectively). DETA-NONOate therefore has potential therapeutic benefits to significantly improve survival of transplanted cells.


  • Tilkorn, DJ
  • Davies, EM
  • Keramidaris, E
  • Dingle, AM
  • Gerrand, YW
  • Taylor, CJ
  • Han, XL
  • Palmer, JA
  • Penington, AJ
  • Mitchell, CA
  • Morrison, WA
  • Dusting, GJ
  • Mitchell, GM

publication date

  • 2012

has subject area