Assessment of simplified methods for quantification of 18F-FDHT uptake in patients with metastatic castration-resistant prostate cancer Academic Article uri icon


  • 18F-fluorodihydrotestosterone (18F-FDHT) PET/CT potentially provides a noninvasive method for assessment of androgen receptor expression in patients with metastatic castration-resistant prostate cancer (mCRPC). The objective of this study was to assess simplified methods for quantifying 18F-FDHT uptake in mCRPC patients and to assess effects of tumor perfusion on these 18F-FDHT uptake metrics. Methods: Seventeen mCRPC patients were included in this prospective observational multicenter study. Test and retest 30-min dynamic 18F-FDHT PET/CT scans with venous blood sampling were performed in 14 patients. In addition, arterial blood sampling and dynamic 15O-H2O scans were obtained in a subset of 6 patients. Several simplified methods were assessed: Patlak plots; SUV normalized to body weight (SUVBW), lean body mass (SUVLBM), whole blood (SUVWB), parent plasma activity concentration (SUVPP), area under the parent plasma curve (SUVAUC,PP), and area under the whole-blood input curve (SUVAUC,WB); and SUVBW corrected for sex hormone-binding globulin levels (SUVSHBG). Results were correlated with parameters derived from full pharmacokinetic 18F-FDHT and 15O-H2O. Finally, the repeatability of individual quantitative uptake metrics was assessed. Results: Eighty-seven 18F-FDHT-avid lesions were evaluated. 18F-FDHT uptake was best described by an irreversible 2-tissue-compartment model. Replacing the continuous metabolite-corrected arterial plasma input function with an image-derived input function in combination with venous sample data provided similar K i results (R 2 = 0.98). Patlak K i and SUVAUC,PP showed an excellent correlation (R 2 > 0.9). SUVBW showed a moderate correlation to K i (R 2 = 0.70, presumably due to fast 18F-FDHT metabolism. When calculating SUVSHBG, correlation to K i improved (R 2 = 0.88). The repeatability of full kinetic modeling parameters was inferior to that of simplified methods (repeatability coefficients > 36% vs. < 28%, respectively). 18F-FDHT uptake showed minimal blood flow dependency. Conclusion: 18F-FDHT kinetics in mCRPC patients are best described by an irreversible 2-tissue-compartment model with blood volume parameter. SUVAUC,PP showed a near-perfect correlation with the irreversible 2-tissue-compartment model analysis and can be used for accurate quantification of 18F-FDHT uptake in whole-body PET/CT scans. In addition, SUVSHBG could potentially be used as an even simpler method to quantify 18F-FDHT uptake when less complex scanning protocols and accuracy are required.


  • Kramer, Gerbrand Maria
  • Yaqub, Maqsood
  • Vargas, Hebert Alberto
  • Schuit, Robert
  • Windhorst, Albert D
  • van den Eertwegh, Alfons
  • van der Veldt, Astrid
  • Bergman, André
  • Burnazi, Eva
  • Lewis, Jason S
  • Chua, Sue Siew-Chen
  • Staton, Kevin
  • Beattie, Bradley Jay
  • Humm, John Laurence
  • Davis, Ian D
  • Weickhardt, Andrew
  • Scott, Andrew
  • Morris, Michael J
  • Hoekstra, Otto S
  • Lammertsma, Adriaan A

publication date

  • 2019

has subject area