Seven Retinal Specializations in the Tubular Eye of the Deep-Sea Pearleye, Scopelarchus michaelsarsi: A Case Study in Visual Optimization Academic Article uri icon

abstract

  • The deep-sea pearleye, Scopelarchus michaelsarsi (Scopelarchidae) is a mesopelagic teleost with asymmetric or tubular eyes. The main retina subtends a large dorsal binocular field, while the accessory retina subtends a restricted monocular field of lateral visual space. Ocular specializations to increase the lateral visual field include an oblique pupil and a corneal lens pad. A detailed morphological and topographic study of the photoreceptors and retinal ganglion cells reveals seven specializations: a centronasal region of the main retina with ungrouped rod-like photoreceptors overlying a retinal tapetum; a region of high ganglion cell density (area centralis of 56.1 x 10(3) cells per mm2) in the centrolateral region of the main retina; a centrotemporal region of the main retina with grouped rod-like photoreceptors; a region (area giganto cellularis) of large (32.2+/-5.6 microm2), alpha-like ganglion cells arranged in a regular array (nearest neighbour distance 53.5+/-9.3 microm with a conformity ratio of 5.8) in the temporal main retina; an accessory retina with grouped rod-like photoreceptors; a nasotemporal band of a mixture of rod- and cone-like photoreceptors restricted to the ventral accessory retina; and a retinal diverticulum comprised of a ventral region of differentiated accessory retina located medial to the optic nerve head. Retrograde labelling from the optic nerve with DiI shows that approximately 14% of the cells in the ganglion cell layer of the main retina are displaced amacrine cells at 1.5 mm eccentricity. Cryosectioning of the tubular eye confirms Matthiessen's ratio (2.59), and calculations of the spatial resolving power suggests that the function of the area centralis (7.4 cycles per degree/8.1 minutes of arc) and the cohort of temporal alpha-like ganglion cells (0.85 cycles per degree/70.6 minutes of arc) in the main retina may be different. Low summation ratios in these various retinal zones suggests that each zone may mediate distinct visual tasks in a certain region of the visual field by optimizing sensitivity and/or resolving power.

authors

  • Collin, Shaun
  • P. Collin, Shaun
  • V. Hoskins, Robert
  • C. Partridge, Julian

publication date

  • 1998