The Mechanism of Plantar Unloading in Total Contact Casts: Implications for Design and Clinical Use Academic Article uri icon

abstract

  • Although the total contact cast (TCC) has been shown to be an extremely effective treatment for the healing of plantar ulcers in diabetic patients, little is known about the biomechanics of its action. In this study, plantar pressure and ground reaction force measurements were obtained from over 750 foot contacts as five subjects with known elevated plantar forefoot pressures walked barefoot, in a padded cast shoe, and a TCC. Peak plantar pressures in the forefoot were markedly reduced in the cast compared with both barefoot and shoe walking (reductions of 75% and 86% respectively, P < 0.05). Peak plantar pressures in the heel were not, however, significantly different between the shoe and the TCC, and the longer duration of heel loading resulted in an impulse that was more than twice as great in the cast compared with the shoe (P < 0.05). An analysis of load distribution indicated that the mechanisms by which the TCC achieves forefoot unloading are (1) transfer of approximately 30% of the load from the leg directly to the cast wall, (2) greater proportionate load sharing by the heel, and (3) removal of a load-bearing surface from the metatarsal heads because of the "cavity" created by the soft foam covering the forefoot. These results point out some of the "essential design features" of the TCC (which are different from what had been previously supposed), support the use of the TCC for healing plantar ulcers in the forefoot, but raise questions about its utility in the healing of plantar ulcers on the heel.

authors

  • Shaw, Jonathan E
  • Hsi, Wei-Li
  • Ulbrecht, Jan S
  • Norkitis, Arleen
  • Becker, Mary B
  • Cavanagh, Peter R

publication date

  • December 1997