Effects of glycine and proline on the calcium activation properties of skinned muscle fibre segments from crayfish and rat Academic Article uri icon

abstract

  • The effects of the polar amino acid glycine (20 mmol l(-1)) and the non-polar amino acid proline (20 mmol l(-1)) on Ca(2+)-activated contraction have been examined in four types of striated muscle fibres. Single fibres dissected from the claw muscle of a crustacean (long- and short-sarcomere) and the hindlimb muscles of the rat (slow-twitch from soleus and fast-twitch from extensor digitorum longus) were activated in matched solutions that either contained the amino acid ('test') or not ('control'). The steady-state force produced in these solutions was used to determine the relation between force production and pCa (-log10[Ca2+]). The results show that in the concentrations used, glycine and proline had only small effects on the maximum Ca(2+)-activated force, pCa corresponding to 10, 50 and 90% maximum force (pCa10, pCa50, pCa90, respectively) or on the slope of the force-pCa curves in the four different fibre types. The relative lack of effects of glycine and proline on contractile activation would confer a distinct physiological advantage to force production of muscle of Cherax, where the concentrations of glycine and proline vary considerably. Finally, the results show that glycine and proline may be useful to balance control solutions when the effects of other amino acids or zwitterions on contractile activation are examined.

publication date

  • 2003