Denervation produces different single fiber phenotypes in fast- and slow-twitch hindlimb muscles of the rat Academic Article uri icon

abstract

  • Using a single, mechanically skinned fiber approach, we tested the hypothesis that denervation (0 to 50 days) of skeletal muscles that do not overlap in fiber type composition [extensor digitorum longus (EDL) and soleus (SOL) muscles of Long-Evans hooded rats] leads to development of different fiber phenotypes. Denervation (50 day) was accompanied by 1) a marked increase in the proportion of hybrid IIB/D fibers (EDL) and I/IIA fibers (SOL) from 30% to >75% in both muscles, and a corresponding decrease in the proportion of pure fibers expressing only one myosin heavy chain (MHC) isoform; 2) complex muscle- and fiber-type specific changes in sarcoplasmic reticulum Ca2+-loading level at physiological pCa ∼7.1, with EDL fibers displaying more consistent changes than SOL fibers; 3) decrease by ∼50% in specific force of all fiber types; 4) decrease in sensitivity to Ca2+, particularly for SOL fibers (by ∼40%); 5) decrease in the maximum steepness of the force-pCa curves, particularly for the hybrid I/IIA SOL fibers (by ∼35%); and 6) increased occurrence of biphasic behavior with respect to Sr2+ activation in SOL fibers, indicating the presence of both slow and fast troponin C isoforms. No fiber types common to the two muscles were detected at any time points ( day 7, 21, and 50) after denervation. The results provide strong evidence that not only neural factors, but also the intrinsic properties of a muscle fiber, influence the structural and functional properties of a particular muscle cell and explain important functional changes induced by denervation at both whole muscle and single cell levels.

publication date

  • September 2006