The emerging role of serotonin (5-hydroxytryptamine) in the skeleton and its mediation of the skeletal effects of low-density lipoprotein receptor-related protein 5 (LRP5) Academic Article uri icon

abstract

  • Novel molecular pathways obligatory for bone health are being rapidly identified. One pathway recently revealed involves gut-derived 5-hydroxytryptamine (5-HT) mediation of the complete skeletal effects of low-density lipoprotein receptor-related protein 5 (LRP5). Mounting evidence supports 5-HT as an important regulatory compound in bone with previous evidence demonstrating that bone cells possess functional pathways for responding to 5-HT. In addition, there is growing evidence that potentiation of 5-HT signaling via inhibition of the 5-HT transporter (5-HTT) has significant skeletal effects. The later is clinically significant as the 5-HTT is a popular target of pharmaceutical agents, such as selective serotonin reuptake inhibitors (SSRIs), used for the management of major depressive disorder and other affective conditions. The observation that 5-HT mediates the complete skeletal effects of LRP5 represents a significant paradigm shift from the traditional view that LRP5 located on the cell surface membrane of osteoblasts exerts direct skeletal effects via Wnt/beta-catenin signaling. This paper discusses the mounting evidence for skeletal effects of 5-HT and the ability of gut-derived 5-HT to satisfactorily explain the skeletal effects of LRP5.

authors

  • Warden, Stuart J
  • Robling, Alexander G
  • Haney, Elizabeth M
  • Turner, Charles H
  • Bliziotes, Michael M

publication date

  • January 2010

published in