Contractile and Ca 2+ -handling properties of the right ventricular papillary muscle in the late-gestation sheep fetus Academic Article uri icon

abstract

  • The force-generating capacity of cardiomyocytes rapidly changes during gestation and early postnatal life coinciding with a transition in cardiomyocyte nucleation in both mice and rats. Changes in nucleation, in turn, appear to coincide with important changes in the excitation-contraction coupling architecture. However, it is not clear whether similar changes are observed in other mammals in which this transition occurs prenatally, such as sheep. Using small (70-300 microM diameter) chemically skinned cardiomyocyte bundles from the right ventricular papillary muscle of sheep fetuses at 126-132 and 137-140 days (d) gestational age (GA), we aimed to examine whether changes in cardiomyocyte nucleation during late gestation coincided with developmental changes in excitation-contraction coupling parameters (e.g., Ca(2+) uptake, Ca(2+) release, and force development). All experiments were conducted at room temperature (23 +/- 1 degrees C). We found that the proportion of mononucleate cardiomyocytes decreased significantly with GA (126-132 d, 45.7 +/- 4.7%, n = 7; 137-140 d, 32.8 +/- 1.6%, n = 6; P < 0.05). When we then examined force development between the two groups, there was no significant difference in either the maximal Ca(2+)-activated force (6.73 +/- 1.54 mN/mm(2), n = 14 vs. 6.55 +/- 1.25 mN/mm(2), n = 7, respectively) or the Ca(2+) sensitivity of the contractile apparatus (pCa at 50% maximum Ca(2+)-activated force: 126-132 d, 6.17 +/- 0.06, n = 14; 137-140 d, 6.24 +/- 0.08, n = 7). However, sarcoplasmic reticulum (SR) Ca(2+) uptake rates (but not Ca(2+) release) increased with GA (P < 0.05). These data reveal that during late gestation in sheep when there is a major transition in cardiomyocyte nucleation, SR Ca(2+) uptake rates increase, which would influence total SR Ca(2+) content and force production.

publication date

  • September 2006