Characterization of Nonlinear Background Components in Voltammetry by Use of Large Amplitude Periodic Perturbations and Fourier Transform Analysis Academic Article uri icon


  • Under most experimental conditions, a distinctly nonlinear background current is encountered in all forms of voltammetry which arises from the potential dependence of the capacitance. The nonlinear background current has been successfully modeled under large amplitude sinusoidal ac voltammetric conditions with a fourth order polynomial. The model was applied to a dummy cell containing a nonideal ceramic capacitor and commonly used electrodes. The nonlinearity in behavior of the background capacitance is particularly significant when considering the discrimination between the Faradaic and background contributions in the higher order harmonics resolved in ac voltammetry by Fourier transform-inverse Fourier transform approaches and in the simulation of the background current and hence double-layer capacitance as a function of potential. Typically, measurable background current under large amplitude conditions is detectable in the dc and fundamental to fourth harmonic components in large amplitude ac voltammetry. For analytical purposes, this background current can be corrected on a per harmonic basis without the need for any model. Background correction has been successfully applied to the first four harmonics for the oxidation of ferrocenemonocarboxylic acid over the concentration range of 5-500 microM in aqueous 0.5 M NaCl solution.

publication date

  • November 2009