APC/CFzr/Cdh1 promotes cell cycle progression during the Drosophila endocycle Academic Article uri icon


  • The endocycle is a commonly observed variant cell cycle in which cells undergo repeated rounds of DNA replication with no intervening mitosis. How the cell cycle machinery is modified to transform a mitotic cycle into endocycle has long been a matter of interest. In both plants and animals, the transition from the mitotic cycle to the endocycle requires Fzr/Cdh1, a positive regulator of the Anaphase-Promoting Complex/Cyclosome (APC/C). However, because many of its targets are transcriptionally downregulated upon entry into the endocycle, it remains unclear whether the APC/C functions beyond the mitotic/endocycle boundary. Here, we report that APC/C Fzr/Cdh1 activity is required to promote the G/S oscillation of the Drosophila endocycle. We demonstrate that compromising APC/C activity, after cells have entered the endocycle, inhibits DNA replication and results in the accumulation of multiple APC/C targets, including the mitotic cyclins and Geminin. Notably, our data suggest that the activity of APC/C Fzr/Cdh1 during the endocycle is not continuous but is cyclic, as demonstrated by the APC/C-dependent oscillation of the pre-replication complex component Orc1. Taken together, our data suggest a model in which the cyclic activity of APC/C Fzr/Cdh1 during the Drosophila endocycle is driven by the periodic inhibition of Fzr/Cdh1 by Cyclin E/Cdk2. We propose that, as is observed in mitotic cycles, during endocycles, APC/C Fzr/Cdh1 functions to reduce the levels of the mitotic cyclins and Geminin in order to facilitate the relicensing of DNA replication origins and cell cycle progression.


  • Narbonne-Reveau, K
  • Senger, S
  • Pal, M
  • Herr, A
  • Richardson, HE
  • Asano, M
  • Deak, P
  • Lilly, MA

publication date

  • April 15, 2008