An implicit approach to deal with periodically repeated medical data Academic Article uri icon

abstract

  • CONTEXT: Temporal information plays a crucial role in medicine, so that in medical informatics there is an increasing awareness that suitable database approaches are needed to store and support it. Specifically, a great amount of clinical data (e.g., therapeutic data) are periodically repeated. Although an explicit treatment is possible in most cases, it causes severe storage and disk I/O problems. OBJECTIVE: In this paper, we propose an innovative approach to cope with periodic relational medical data in an implicit way. METHODS: We propose a new data model, representing periodic data in a compact (implicit) way, which is a consistent extension of TSQL2 consensus approach. Then, we identify some important types of temporal queries, and present query answering algorithms to answer them. Finally, we also run experiments to evaluate our approach. RESULTS: The experiments show that our approach outperforms current explicit approaches, especially as regard disk I/O. CONCLUSION: We have provided an implicit approach to periodic data with is a consistent extension of TSQL2 (and which is thus grant interoperable with it), and we have experimentally proven that it outperforms current explicit approaches.

publication date

  • July 2012