Regulation of Myelin Oligodendrocyte Glycoprotein in Different Species throughout Development Academic Article uri icon


  • The assembly and function of central nervous system (CNS) myelin requires the coordinated expression of several myelin-specific proteins, including myelin oligodendrocyte glycoprotein (MOG). Despite the recent cloning of MOG, the function of this molecule is still unknown. Because MOG is a late marker of oligodendrocyte maturation and is exclusively expressed in the CNS on the outermost lamellae of the myelin membrane, it is possible that this molecule plays an important role in the control and maintenance of myelination. Furthermore, as a member of the immunoglobulin superfamily that carries the L2/HNK-1 epitope, it has also been suggested that MOG is involved in cell-cell interaction, perhaps functioning as an adhesive molecule for bundles of nerve fibres. In order to further delineate the role of MOG throughout development we have analysed, by immunoblotting, the developmental appearance and accumulation pattern of MOG in the CNS of three mammalian species. We have also purified MOG to homogeneity from five different species including rat, guinea pig, bovine, monkey and human. Immunoblotting revealed two major MOG bands at 28 and 55 kD in all species. The 55 kD band appears to be a dimer of the lower band although treatment with 2-mercaptoethanol or EDTA failed to abolish it. Purified MOG from all species also displayed faint reactivity with bands at 36, 48 and 78 kD. While the 78 kD band may represent a trimer of MOG, the identity of the other bands remains unknown. Developmental studies in mouse, rat, guinea pig and bovine showed at as for other myelin proteins, MOG displayed a caudorostral gradient of expression, appearing in the spinal cord before the brain. The sensitivity of the detection system used here allowed us to detect MOG protein earlier than in previous reports such that its presence was clearly demonstrated in the CNS of mice and rats at 14 and 10 days after birth, respectively. Analysis of MOG expression in a novel transgenic mouse model that has both delayed and reduced myelination revealed that, like other myelin proteins, MOG expression was delayed compared with normal littermates. These results demonstrate that the expression of MOG is similar in all species and is regulated in a manner consistent with other myelin-specific proteins.


publication date

  • 1997