The separation of the Hamilton-Jacobi equation for the Kerr metric Academic Article uri icon

abstract

  • AbstractWe discuss the separability of the Hamilton-Jacobi equation for the Kerr metric. We use a recent theorem which says that a completely integrable geodesic equation has a fully separable Hamilton-Jacobi equation if and only if the Lagrangian is a composite of the involutive first integrals. We also discuss the physical significance of Carter's fourth constant in terms of the symplectic reduction of the Schwarzschild metric via SO(3), showing that the Killing tensor quantity is the remnant of the square of angular momentum.

authors

publication date

  • October 1999