Some integer-valued trigonometric sums Academic Article uri icon

abstract

  • It is shown that for m = 1,2,3,…, the trigonometric sums and can be represented as integer-valued polynomials in n of degrees 2m – 1 and 2m, respectively. Properties of these polynomials are discussed, and recurrence relations for the coefficients are obtained. The proofs of the results depend on the representations of particular polynomials of degree n – 1 or less as their own Lagrange interpolation polynomials based on the zeros of the nth Chebyshev polynomial Tn(x) = cos(narccos x), -1≤x≤1.

publication date

  • June 1997