Nuclear DNA markers of the Australian tetraploid Microseris scapigera and its North American diploid relatives Academic Article uri icon

abstract

  • The allotetraploid lactucean Microseris scapigera of Australia and New Zealand has presumably arisen in western North America by hybridization between an annual and a perennial diploid species followed by polyploidization and long-distance dispersal. A phylogenetic tree of various North American diploids, based on RFLPs in the nuclear DNA, confirmed the division of the genus into a clade containing the diploid annuals and a clade containing the diploid perennials. Four RFLP markers were shared among all accessions of M. scapigera and all the diploid accessions. Twelve markers found in the outgroup (Uropappus lindleyi) were absent in all Microseris. A cladogram of plants from six populations of M. scapigera based on eight RFLP markers shows a progressive specialization of three clades of two populations each. Two populations without any markers differentiating them from the North American diploids form the basic clade. These consist of plants with an apparently derived morphology that are self-compatible (or agamospermic) and thereby differ from most M. scapigera. Few markers in M. scapigera could be attributed to one or the other parental genome. As yet, we have found only one ITS 1 sequence of the nuclear ribosomal cistrons in M. scapigera. This sequence has features of both parental sequences.

publication date

  • December 1993