Effects of carnosine on contractile apparatus Ca2+ sensitivity and sarcoplasmic reticulum Ca2+ release in human skeletal muscle fibers Academic Article uri icon


  • There is considerable interest in potential ergogenic and therapeutic effects of increasing skeletal muscle carnosine content, although its effects on excitation-contraction (EC) coupling in human muscle have not been defined. Consequently, we sought to characterize what effects carnosine, at levels attained by supplementation, has on human muscle fiber function, using a preparation with all key EC coupling proteins in their in situ positions. Fiber segments, obtained from vastus lateralis muscle of human subjects by needle biopsy, were mechanically skinned, and their Ca2+ release and contractile apparatus properties were characterized. Ca2+ sensitivity of the contractile apparatus was significantly increased by 8 and 16 mM carnosine (increase in pCa50 of 0.073 ± 0.007 and 0.116 ± 0.006 pCa units, respectively, in six type I fibers, and 0.063 ± 0.018 and 0.103 ± 0.013 pCa units, respectively, in five type II fibers). Caffeine-induced force responses were potentiated by 8 mM carnosine in both type I and II fibers, with the potentiation in type II fibers being entirely explicable by the increase in Ca2+ sensitivity of the contractile apparatus caused by carnosine. However, the potentiation of caffeine-induced responses caused by carnosine in type I fibers was beyond that expected from the associated increase in Ca2+ sensitivity of the contractile apparatus and suggestive of increased Ca2+-induced Ca2+ release. Thus increasing muscle carnosine content likely confers benefits to muscle performance in both fiber types by increasing the Ca2+ sensitivity of the contractile apparatus and possibly also by aiding Ca2+ release in type I fibers, helping to lessen or slow the decline in muscle performance during fatiguing stimulation.

publication date

  • March 1, 2012