Locally compact topologies on abelian groups Academic Article uri icon

abstract

  • AbstractIt is shown that an abelian group admits a non-discrete locally compact group topology if and only if it has a subgroup algebraically isomorphic to the group of p-adic integers or to an infinite product of non-trivial finite cyclic groups. It is also proved that an abelian group admits a non-totally-disconnected locally compact group topology if and only if it has a subgroup algebraically isomorphic to the group of real numbers. Further, if an abelian group admits one non-totally-disconnected locally compact group topology then it admits a continuum of such topologies, no two of which yield topologically isomorphic topological groups.

publication date

  • March 1987